Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) (với AB < AC). BE và CF là 2 đường cao của tam giác cắt nhau tại H
a, Chứng minh tứ giác BEFC và AEHF là tứ giác nội tiếp
b, Đường thẳng EF cắt đường thẳng BC tại S và EF cắt đường tròn (O) tại M và N (M nằm giữa S và E). Chứng minh SM. SN = SE. SF
c, Tia CE cắt đường tròn (O) tại K, vẽ dây KI song song với EF. Chứng minh H, K đối xứng nhau qua AB
d, Chứng minh 3 điểm H, F, I thẳng hàng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Xét tứ giác BEFC có:
∠BEC = 900 (CE là đường cao)
∠BFC = 900 (BF là đường cao)
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEFC là tứ giác nội tiếp
Xét tứ giác AEHF có:
∠AEH = 900 (CE là đường cao)
∠AFH = 900 (BF là đường cao)
=> ∠AEH + ∠AFH = 1800
=> Tứ giác AEHF là tứ giác nội tiếp
b,
Xét ΔSBE và ΔSFC có:
∠FSC là góc chung
∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)
=> ΔSBE ∼ ΔSFC (g.g)
=> SBSF = SESC
=> SE.SF = SB.SC (1)
Xét ΔSMC và ΔSNB có:
∠ NSC là góc chung
∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)
=> ΔSMC ∼ ΔSBN (g.g)
=> SMSB = SCSN
=>SM.SN = SB.SC (2)
Từ (1) và (2) => SE.SF = SM.SN
c, Ta có:
KAE^=KCB^ (2 góc nội tiếp cùng chắn cung KB)
HAE^=BFM^ (tứ giác AEHF là tứ giác nội tiếp)
KCB^=BFM^ (tứ giác BEFC là tứ giác nội tiếp)
=> ∠KAE = ∠HAE
=> AE là tia phân giác của góc ∠KAH
Mà AE cũng là đường cao của tam giác KAH
=> ΔKAH cân tại A
=> AE là đường trung tuyến của ΔKAH
=> E là trung điểm của KH hay K và H đối xứng nhau qua AB
d, Tia BF cắt đường tròn (O) tại J
∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)
∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )
=> ∠KJB = ∠EFH
Mà 2 góc này ở vị trí so le trong
=> KJ // EF
KI // EF (gt)
=> I ≡ J
=> H, F, J thẳng hàng
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |