Bài tập  /  Bài đang cần trả lời

1. Cho (O; R), dây BC cố định không đi qua tâm O, A là điểm bất kì trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại Ha, Chứng minh tứ giác HDBF, BCEF nội tiếpb, K là điểm đối xứng của A qua O. Chứng minh HK đi qua trung điểm của BCc, Giả sử ∠BAC = 600. Chứng minh Δ AHO cân2. Một hình chữ nhật có chiều dài 3cm, chiều rộng bằng 2cm, quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ

1. Cho (O; R), dây BC cố định không đi qua tâm O, A là điểm bất kì trên cung lớn BC. Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H

a, Chứng minh tứ giác HDBF, BCEF nội tiếp

b, K là điểm đối xứng của A qua O. Chứng minh HK đi qua trung điểm của BC

c, Giả sử ∠BAC = 600. Chứng minh Δ AHO cân

2. Một hình chữ nhật có chiều dài 3cm, chiều rộng bằng 2cm, quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ

1 Xem trả lời
Hỏi chi tiết
14
0
0
Phạm Văn Bắc
10/09/2024 09:34:57

1.

a, Xét tứ giác BDHF có:

∠BDH = 900 (AD là đường cao)

∠BFH = 900 (CF là đường cao)

=>∠BDH + ∠BFH = 1800

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 900 (CF là đường cao)

∠BEC = 900 (BE là đường cao)

=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b, Ta có:

∠KBA = 900 (góc nội tiếp chắn nửa đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là đường cao)

=> KB // CH

Tương tự:

∠KCA) = 900 (góc nội tiếp chắn nửa đường tròn)

=>KC⊥AC

BH⊥AC (BH là đường cao)

=> HB // CK

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> Hai đường chéo BC và KH cắt nhau tại trung điểm mỗi đường

=> HK đi qua trung điểm của BC

c, Gọi M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là đường trung bình của tam giác AHK

=> OM = 1/2AH (1)

ΔBOC cân tại O có OM là trung tuyến

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 600 (= 1/2∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos(MOC) = OC.cos600 = 1/2.OC = 1/2.OA (2)

Từ (1) và (2) => OA = AH => ΔOAH cân tại A

2. Quay hình chữ nhật vòng quanh chiều dài được một hình trụ có bán kính đáy là R= 2 cm, chiều cao là h = 3 cm

Khi đó diện tích toàn phần của hình trụ là

Stp=2πR2+2πRh=2π.22+2π.2.3=20πcm2

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×