Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R) và điểm A nằm ngoài (O) sao cho OA = 3R. Vẽ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Vẽ cát tuyến AMN với (O) (M nằm giữa A và N và AMN không đi qua O). Gọi I là trung điểm của MNa, Chứng minh 5 điểm A, B, O, I, C thuộc một đường trònb, Chứng minh AM.AN = 8R2c, Tính độ dài AM, AN khi MN = R3d, BC cắt OA, OI tại H và K. Chứng minh KM, KN là tiếp tuyến của (O)

Cho đường tròn (O; R) và điểm A nằm ngoài (O) sao cho OA = 3R. Vẽ các tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Vẽ cát tuyến AMN với (O) (M nằm giữa A và N và AMN không đi qua O). Gọi I là trung điểm của MN

a, Chứng minh 5 điểm A, B, O, I, C thuộc một đường tròn

b, Chứng minh AM.AN = 8R2

c, Tính độ dài AM, AN khi MN = R3

d, BC cắt OA, OI tại H và K. Chứng minh KM, KN là tiếp tuyến của (O)

1 Xem trả lời
Hỏi chi tiết
17
0
0
CenaZero♡
10/09/2024 09:49:30

a, Ta có: ∠ABO = 90o(Do BA là tiếp tuyến của (O)) nên B thuộc đường tròn đường kính OA

Tương tự ∠ACO = 90onên C thuộc đường tròn đường kính OA

Do I là trung điểm của MN nên OI ⊥ MN

=> ∠AIO = 90o => I thuộc đường tròn đường kính OA

Vậy 5 điểm O, A , B, C, I cùng thuộc đường tròn đường kính OA

b, Xét ΔABM và ΔANB có:

∠BAN là góc chung

∠ABM = ∠ANB (2 góc cùng chắn ⏜BM)

=> ΔABM ∼ ΔANB

=> ABAN = AMAB => AM.AN = AB2

Xét tam giác OAB vuông tại O có:

AB2 = OA2 – OB2 = (3R)2 – R2 = 8R2

c, Gọi độ dài AM là x

=> AN = x + R3

Theo câu b ta có:

AM.AN = 8R2

=> x(x + R3) = 8R2 ⇔ x2 + xR3 – 8R2 = 0

Δ = (R3)2 – 4.( –8R2 ) = 35R2 => △=R35

Vậy 

=> AM.AN = AB2

d, Ta có:

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

và OB = OC

=> OA là đường trung trực của BC

Do đó OA ⊥ BC tại H

Xét ΔOHK và Δ OIA có:

∠AOK là góc chung

∠OHK = ∠OIA = 90o

=> ΔOHK ∼ ΔOIA

Mặt khác, xét tam giác ABO vuông tại B có BH là đường cao

=> OH.OA = OB2 = R2 (2)

Từ (1) và (2) => OK.OI = R2 = OM2

=> OMOK = OIOM

Xét tam giác OIM và tam giác OMK có:

∠MOK là góc chung

OMOK = OIOM

=> ΔOIM ∼ ΔOMK (c.g.c)

=> ∠OIM = ∠OMK = 90o Hay OM ⊥ MK

Vậy MK là tiếp tuyến của (O)

Chứng minh tương tự ta được NK là tiếp tuyến của (O).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×