Bài tập  /  Bài đang cần trả lời

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH.

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH.

1 Xem trả lời
Hỏi chi tiết
13
0
0
CenaZero♡
10/09/2024 11:43:25

* Trong ∆BCD, ta có:

E là trung điểm của BC (gt)

F là trung điểm của BD (gt)

Suy ra EF là đường trung bình của ∆BCD

⇒ EF // CD và EF = 1/2 CD (1)

* Trong ∆ACD, ta có: H là trung điểm của AC (gt)

G là trung điểm của AD (gt)

Suy ra HG là đường trung bình của ∆ACD

⇒HG // CD và HG = 1/2 CD (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

* Mặt khác: EF // CD (chứng minh trên)

AB ⊥ CD (gt)

Suy ra EF ⊥ AB

Trong ∆ABC ta có HE là đường trung bình ⇒ HE // AB

Suy ra: HE ⊥ EF hay ∠(FEH) = 900

Vậy hình bình hành EFGH là hình chữ nhật.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×