Tứ giác ABCD có các đường chéo cắt nhau tại O và chu vi các tam giác OAB, OBC, OCD, ODA bằng nhau. Chứng minh rằng ABCD là hình thoi.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử OC≥OA,OD≥OB
Trên đoạn thẳng OC lấy điểm E, trên đoạn thẳng OD lấy điểm F sao cho OE = OA, OF = OB. Tứ giác ABEF là hình bình hành, chu vi tam giác OAB bằng chu vi tam giác OEF.
Theo đề bài, chu vi tam giác OAB bằng chu vi tam giác OCD nên chu vi các tam giác OEF và OCD bằng nhau, tức là EF = EC + CD + DF. Điều này chỉ xảy ra khi C trùng E và D trùng F. Vậy ABCD là hình bình hành.
Sau đó chứng minh tiếp ABCD là hình thoi bằng cách sử dụng điều kiện chu vi tam giác OAB bằng chu vi tam giác OBC ở đề bài.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |