Chứng minh rằng tập hợp những điểm cách đều ba đỉnh của tam giác ABC là đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn (C) ngoại tiếp tam giác ABC đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phần thuận. Nếu MA = MB = MC nghĩa là M cách đều ba đỉnh của tam giác ABC và MO vuông góc với mặt phẳng (ABC) thì ta có ba tam giác vuông MOA, MOB, MOC bằng nhau. Từ đó ta suy ra OA = OB = OC nghĩa là A, B, C nằm trên đường tròn tâm O ngoại tiếp tam giác ABC. Vậy điểm M cách đều ba đỉnh của tam giác ABC thì nằm trên đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn ngoại tiếp tam giác ABC.
Phần đảo. Nếu ta lấy một điểm M bất kì thuộc đường thẳng d nói trên thì ta có ba tam giác vuông MOA, MOB, MOC bằng nhau. Do đó ta suy ra MA = MB = MC nghĩa là điểm M cách đều ba đỉnh của tam giác ABC.
Kết luận. Tập hợp những điểm cách đều ba đỉnh của tam giác ABC là đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn (C) ngoại tiếp tam giác ABC đó. Người ta thường gọi đường thẳng d là trục của đường tròn (C).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |