Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC (M, N không phải là đỉnh của tam giác) (H.9.8). Chứng minh rằng MN < BC. (Gợi ý. So sánh MN với NB, NB với BC).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tam giác NAM vuông tại A nên \(\widehat {AMN}\) là góc nhọn, suy ra \(\widehat {NMB} = 180^\circ - \widehat {AMN}\) là góc tù. Trong tam giác NMB, góc NMB là lớn nhất nên MN < NB. (1)
Tương tự, tam giác ABN vuông tại A nên \(\widehat {BNA}\) là góc nhọn; suy ra \(\widehat {BNC}\) là góc tù. Trong tam giác BCN, góc BNC lớn nhất nên BN < BC. (2)
Từ (1) và (2) ta có MN < BC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |