Lập phương trình của mặt phẳng (α) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:
(β): 3x – 2y + 2z + 7 = 0
(γ): 5x – 4y + 3z + 1 = 0
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Mặt phẳng (α) vuông góc với hai mặt phẳng (β) và (γ), do đó hai vecto có giá song song hoặc nằm trên (α) là: nβ→ = (3; −2; 2) và nγ→ = (5; −4; 3).
Suy ra nα→ = nβ→ ∧ nγ→ = (2; 1; −2)
Mặt khác (α)(α) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là nα→. Vậy phương trình của (α) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |