Bài tập  /  Bài đang cần trả lời

Cho hai đường thẳng:d: x=6y=-2tz=7+t và d1: x=-2+t'y=-2z=-11-t'Lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.

Cho hai đường thẳng:

d: x=6y=-2tz=7+t và d1: x=-2+t'y=-2z=-11-t'

Lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Phạm Minh Trí
10/09 16:21:18

Đường thẳng d đi qua M(6; 0 ;7) có vecto chỉ phương a→ (0; −2; 1). Đường thẳng d1 đi qua N(-2; -2; -11) có vecto chỉ phương b→ (1; 0; −1).

Do d và d1 chéo nhau nên (P) là mặt phẳng đi qua trung điểm của đoạn vuông góc chung AB của d, d1 và song song với d và d1.

Để tìm tọa độ của A, B ta làm như sau:

Lấy điểm A(6; - 2t; 7 + t) thuộc d, B( -2 + t’; -2; -11 – t’) thuộc d1. Khi đó: AB→ = (−8 + t′; −2 + 2t; −18 – t − t′)

Ta có: 

Suy ra A(6; 4; 5), B(-6; -2; -7)

Trung điểm của AB là I(0; 1; -1)

Ta có: AB→ = (−12; −6; −12). Chọn nP→ = (2; 1; 2)

Phương trình của (P) là: 2x + (y – 1) + 2(z + 1) = 0 hay 2x + y + 2z + 1 = 0.

Có thể tìm tọa độ của A, B bằng cách khác:

Ta có: Vecto chỉ phương của đường vuông góc chung của d và d1 là:

 = (2; 1; 2)

Gọi (Q) là mặt phẳng chứa d và đường vuông góc chung AB.

Khi đó:

 nQ→=a→∧a→∧b→

Phương trình của (Q) là : –5(x – 6) + 2y + 4(z – 7) = 0 hay –5x + 2y + 4z + 2 = 0

Để tìm d1∩ (Q) ta thế phương trình của d1 vào phương trình của (Q). Ta có:

–5(–2 + t′) + 2(–2) + 4(–11 – t′) + 2 = 0

⇒ t′ = 4

⇒ d1∩ (Q) = B(−6; −2; −7)

Tương tự, gọi (R) là mặt phẳng chứa d1 và đường vuông góc chung AB. Khi đó: nR→ = (−1; 4; −1)

Phương trình của (R) là –x + 4y – z – 5 = 0.

Suy ra d ∩ (R) = A(6; 4; 5).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×