Cho tam giác ABC có ∠A = 120o , phân giác AD. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa A. Dựng tia Bx tạo với BC một góc ∠CBx = 60o và cắt AD ở E. Chứng minh rằng:
a) ΔADC và ΔBDE đồng dạng và AE.BD = AB.BE
b) ΔABD và ΔCED đồng dạng và ΔEBC đều
c) BC.AE = AB.EC + AC.BE
d) 1AD=1AB+1AC
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔADC ∼ ΔBDE có:
∠DBE = ∠CAD ( = 60o)
∠BDE = ∠CDA (đối đỉnh)
⇒ ΔADC ∼ ΔBDE (g.g)
Xét ΔEBD và ΔEAB có:
∠BEA chung;
∠EBD = ∠BAE = 60o
⇒ ΔEBD ∼ ΔEAB (g.g)
b) Ta có ΔADC ∼ ΔBDE (cmt)
Lại có ∠ADB = ∠EDC (đối đỉnh)
Do đó ΔADB ∼ ΔCDE (c.g.c)
⇒ ∠BCE = ∠BAD = 60o
Vậy ΔEBC đều (∠EBC = ∠BCE = 60o )
c) Vì AD là phân giác của ∠BAC (gt) ta có:
Từ (1) ta có AE.BD = BE.AB = EC.AB (vì EB = EC)
Hay EC.AB = AE.BD (3)
Công (2) và (3): AB.EC + AC.BE = AE(CD + BD) = AE.BC (đpcm)
d) Ta có: AE.BC = AB.EC + AC.BE
= AB.BC + AC.BC (vì BC = EC = BE)
= BC(AB + AC) ⇒ AE = AB + AC (*)
Mặt khác: Xét ΔADC và ΔABE có: ∠CAD = ∠BAE = 60o ; ∠ACD = ∠AEB (cmt)
⇒ ΔADC ∼ ΔABE (g.g)
Theo (*) ta có:
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |