Cho bốn điểm A, B, C và D không đồng phẳng. Gọi GA, GB, GC, GD lần lượt là trọng tâm của các tam giác BCD, CDA, ADB, ACB. Chứng minh rằng AGA, BGB, CGC, DGD đồng qui.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi N là trung điểm CD.
+ GA là trọng tâm ΔBCD
⇒ GA ∈ trung tuyến BN ⊂ (ANB)
⇒ AGA ⊂ (ANB)
GB là trọng tâm ΔACD
⇒ GB ∈ trung tuyến AN ⊂ (ANB)
⇒ BGB ⊂ (ANB).
Trong (ANB): AGA không song song với BGB
⇒ AGA cắt BGB tại O
+ Chứng minh tương tự: BGB cắt CGC; CGC cắt AGA.
+ CGC không nằm trong (ANB) ⇒ AGA; BGB; CGC không đồng phẳng(áp dụng kết quả bài 3).
⇒ AGA; BGB; CGC đồng quy tại O
+ Chứng minh hoàn toàn tương tự: AGA; BGB; DGD đồng quy tại O
Vậy AGA; BGB ; CGC; DGD đồng quy tại O (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |