Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ 3 với đường tròn, nó cắt Ax , By tại C, D. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.
a) Chứng minh rằng: tam giác COB là tam giác vuông.
b) Chứng minh MC.MD = OM2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét (O) có:
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: OC là tia phân giác của góc \(\widehat {MOA}\) (1)
Xét (O) có: DM là tiếp tuyến; DB là tiếp tuyến
Do đó OD là tia phân giác của góc \(\widehat {MOB}\)(2)
Từ (1) và (2) suy ra: \(\widehat {DOC} = \frac{1}{2}\left( {\widehat {MOA} + \widehat {MOB}} \right) = \frac{1}{2}.180^\circ = 90^\circ \)
hay ΔODC vuông tại O.
b) Xét ΔODC vuông tại O có OM là đường cao
Áp dụng hệ thức lượng trong tam giác vuông, có: MC.MD = MO2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |