Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một). Ta có:
K1 = \({2^}{.3^}\)
K2 = \({2^}{.3^}\)
K3 = \({2^}{.3^}\)
K4 = \({2^}{.3^}\)
K5 = \({2^}{.3^}\)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau:
+ A là tập hợp các số có dạng 2m.3n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2m.3n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2m.3n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2m.3n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = \({2^}{.3^}\); Kj = \({2^}{.3^}\)
⇒ Ki.Kj = \({2^{{a_i} + {a_j}}}{.3^{{b_i} + {b_j}}}\)
Vì Ki và Kj thuộc cùng 1 tập hợp
Suy ra: ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ
ai + aj và bi + bj đều chẵn
Ki.Kj = \({2^{{a_i} + {a_j}}}{.3^{{b_i} + {b_j}}}\)là số chính phương.
Vậy trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |