Bài tập  /  Bài đang cần trả lời

Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H ∈ AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB. a) Chứng minh tứ giác ANMD là hình thoi. b) Tính góc \(\widehat {HMC}\).

Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H ∈ AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB.

a) Chứng minh tứ giác ANMD là hình thoi.

b) Tính góc \(\widehat {HMC}\).

1 Xem trả lời
Hỏi chi tiết
23
0
0
Nguyễn Thị Thảo Vân
10/09/2024 17:46:15

Ta có:

AB // CD (tính chất hình bình hành)

N là trung điểm của AB nên AN = 1/2 AB

M là trung điểm của CD nên DM = 1/2 CD

Do AB = CD (tính chất hình bình hành) nên AN = DM

Do đó, AN // DM và AN = DM

Từ đó suy ra tứ giác ANMD là hình bình hành có hai cạnh kề bằng nhau, nên là hình thoi.

Ta có:

BH ⊥ AD (theo đề bài)

Gọi I là giao điểm của BH và MN

Ta có BI = HI (tính chất tam giác vuông cân)

Ta có MI = NI (vì M, N là trung điểm của CD, AB)

Do đó, BI = HI = MI = NI

Từ đó suy ra BH và MN giao nhau tại trung điểm I và vuông góc với nhau.

Vậy ta đã chứng minh được tứ giác ANMD là hình thoi.

b) Ta có: MN // DA và DA ⊥ BH

Suy ra: MN ⊥ BH và đi qua trung điểm của BH

Hay MN là đường trung trực của BH

⇒ \(\widehat = \widehat \)

Lại có: \(\widehat = \widehat ;\widehat {NMC} = \widehat {ADM} = 70^\circ \)

Suy ra: \(\widehat = \widehat = 70^\circ :2 = 35^\circ \)

Vậy: \[\widehat {HMC} = 3.35^\circ = 105^\circ \].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×