Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm. Vẽ AM vuông góc BD.
a) Chứng minh: tam giác ABD vuông. Tính AM, BM, MD.
b) Kẻ tia Bx // AD, vẽ AM vuông góc BD cắt Bx tại C. Chứng minh: AB2 = AD.BC.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta thấy: 252 = 202 + 152 hay AB2 + AD2 = BD2
Theo định lí Pytago đảo, suy ra tam giác ABD vuông tại A
Áp dụng hệ thức lượng trong tam giác ABD vuông ta có:
AB.AD = AM.BD ⇒ AM = \(\frac = \frac = 12cm\)
AD2 = MD.BD ⇒ DM = \(\frac{{A{D^2}}} = \frac{{{{20}^2}}} = 16cm\)
BM = BD – DM = 25 – 16 = 9(cm)
b) Vì AB ⊥ AD do ABD vuông tại A
Và Bx // AD
Nên Bx ⊥ AB tại B. Suy ra: \(\widehat {ABC} = 90^\circ \)
Xét tam giác BAM và tam giác BDA có:
Chung \(\widehat B\)
\(\widehat {BMA} = \widehat {BAD} = 90^\circ \)
⇒ ∆BMA ∽ ∆BAD (g.g)
Suy ra: \(\widehat {BAM} = \widehat {BDA}\) hay \(\widehat {BAC} = \widehat {BDA}\)
Xét tam giác BAC và tam giác BAD có:
\(\widehat {BAC} = \widehat {BDA}\)(chứng minh trên)
\(\widehat {ABC} = \widehat {BAD} = 90^\circ \)
⇒ ∆BAC ∽ ∆ADB (g.g)
⇒ \(\frac = \frac\) ⇒ AB2 = AD.AC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |