Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Kẻ Bx, Cy lần lượt vuông góc với AB, AC chúng cắt nhau tại K.
1. Chứng minh tứ giác BHCK là hình bình hành và H, M, K thẳng hàng
2. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân
3. Gọi G là giao điểm của BK và HI, tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Ta có: BH vuông góc với AC
CK vuông góc với AC
⇒ BH // CK
Chứng minh tương tự ta có: CH // BK
Xét tứ giác BHCK có: BH // CK; CH//BK
⇒ Tứ giác BHCK là hình bình hành
Có M là trung điểm của BC⇒ M là trung điểm của HK
⇒ M, H, K thẳng hàng
2. Gọi HI cắt BC tại J
Xét tam giác HIK có: J là trung điểm của HI; M là trung điểm của HK
⇒ JM là đường trung bình trong tam giác HIK
⇒ IK // MJ hay IK // BC
CH là đường cao trong tam giác ABC
⇒ Tam giác ABC cân tại C
Vậy tứ giác GHCK là hình thang cân
⇒ Tam giác ABC cân tại CHôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |