Giải thích vì sao nếu f'(x) không đổi dấu khi x qua x0 thì x0 không phải là điểm cực trị của hàm số f(x)?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có nếu hàm số f(x) có một cực trị tại x = x0 thì đạo hàm của hàm số đó f'(x) tại x = x0 phải bằng 0 hoặc không tồn tại.
Nếu f'(x) không đổi dấu khi x qua x0 có nghĩa là f'(x) không chuyển từ dương sang âm hoặc ngược lại khi đi từ một phía của x0 sang phía khác. Điều này có nghĩa là f'(x) không đạt đến giá trị 0 tại x = x0. Do đó x0 không thể là một điểm cực trị.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |