Cho tam giác ABC không là tam giác vuông. Gọi H và K là chân các đường vuông góc lần lượt hạ từ B và C xuống AC và AB. Chứng minh rằng:
a) Đường tròn đường kính BC đi qua các điểm H và K;
b) KH < BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi trung điểm của BC là O.
Tam giác vuông BKC có KO là đường trung tuyến KO ứng với cạnh huyền BC nên
KO = OB = OC hay B, K, C thuộc đường tròn tâm O đường kính BC. (1)
Tam giác BHC vuông tại H có HO là đường trung tuyến ứng với cạnh huyền BC nên
HO = BO = OB hay B, H, C thuộc được đường tròn tâm O đường kính BC. (2)
Từ (1) và (2) ta có K, H thuộc đường tròn tâm O đường kính BC.
Vậy đường tròn đường kính BC đi qua các điểm H và K.
b) Đường tròn tâm O có BC là đường kính và KH là dây không qua tâm O.
Do đó KH < BC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |