Bài tập  /  Bài đang cần trả lời

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC. Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.

Cho tam giác cân ABC tại đỉnh A. Gọi H là trung điểm của BC.

Gọi I là điểm trên AM, K là điểm trên AN sao cho BI ⊥ AM; CK ⊥ AN. Chứng minh rằng tam giác AIK cân tại A, từ đó suy ra IK // MN.

1 trả lời
Hỏi chi tiết
14
0
0
Tôi yêu Việt Nam
10/09 22:00:55

Ta có: ∆ABM = ∆ACN (chứng minh trên) suy ra \[\widehat {BMI} = \widehat {CNK}\] (hai góc tương ứng) và AM = AN (hai cạnh tương ứng).

∆BIM \(\left( {\widehat {BIM} = 90^\circ } \right)\) và ∆CKN \(\left( {\widehat {CKN} = 90^\circ } \right)\) có:

          BM = CN (giả thiết),

\[\widehat {BMI} = \widehat {CNK}\] (chứng minh trên).

Nên ∆BIM = ∆CKN (cạnh huyền - góc nhọn).

Suy ra MI = NK (hai cạnh tương ứng).

Mà AM = AN (chứng minh trên – do ∆ABM = ∆ACN) nên AI = AK, suy ra ∆AIK cân tại A (dấu hiệu nhận biết tam giác cân).

Ta có AM = AN (chứng minh trên) nên ∆AMN cân tại A (dấu hiệu nhận biết tam giác cân).

Suy ra \[\widehat {AMN} = \frac{{180^\circ - \widehat {MAN}}}{2}\].

Ta có ∆AIK cân tại A (chứng minh trên) nên \[\widehat {AIK} = \frac{{180^\circ - \widehat {IAK}}}{2}\].

Từ đó \[\widehat {AIK} = \widehat {AMN}\] \[\left( { = \frac{{180^\circ - \widehat {MAN}}}{2}} \right)\].

Mà hai góc này ở vị trí đồng vị nên IK // MN (dấu hiệu nhận biết hai đường thẳng song song).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư