Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát un cho bởi công thức sau:
a) un = 2n2 + 1;
b) un = \(\frac{{{{\left( { - 1} \right)}^n}}}\);
c) un = \(\frac{{{2^n}}}{n}\);
d) un = \({\left( {1 + \frac{1}{n}} \right)^n}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có: 5 số hạng đầu tiên của dãy (un) là: u1 = 2.12 + 1 = 3; u2 = 2.22 + 1 = 9; u3 = 2.32 + 1 = 19; u4 = 2.42 + 1 = 33; u5 = 2.52 + 1 = 51.
b) Ta có 5 số hạng đầu của dãy un = \(\frac{{{{\left( { - 1} \right)}^n}}}\) là:
\({u_1} = \frac{{{{\left( { - 1} \right)}^1}}} = \frac{{ - 1}}{1} = 1;{u_2} = \frac{{{{\left( { - 1} \right)}^2}}} = \frac{1}{3};{u_3} = \frac{{{{\left( { - 1} \right)}^3}}} = \frac{1}{5};{u_4} = \frac{{{{\left( { - 1} \right)}^4}}} = \frac{1}{7};{u_5} = \frac{{{{\left( { - 1} \right)}^5}}} = - \frac{1}{9}\).
c) Ta có 5 số hàng đầu của dãy un = \(\frac{{{2^n}}}{n}\) là:
u1 = \(\frac{{{2^1}}}{1} = 2\); u2 = \(\frac{{{2^2}}}{1} = 4\); u3 = \(\frac{{{2^3}}}{1} = 8\); u4 = \(\frac{{{2^4}}}{1} = 16\); u5 = \(\frac{{{2^5}}}{1} = 32\).
d) Ta có 5 số hạng đầu của dãy un = \({\left( {1 + \frac{1}{n}} \right)^n}\) là:
u1 = \({\left( {1 + \frac{1}{1}} \right)^1} = 2\); u2 = \({\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\); u3 = \({\left( {1 + \frac{1}{3}} \right)^3} = \frac\); u4 = \({\left( {1 + \frac{1}{4}} \right)^4} = \frac\); u5 = \({\left( {1 + \frac{1}{5}} \right)^5} = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |