LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Gọi C là nửa đường tròn đường kính AB = 2R. C1 là đường gồm hai nửa đường tròn đường kính \(\frac{2}\). C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{4}\), ... Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{{2^n}}},...\)(Hình 4). Gọi Pn là độ dài của C, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB. a) Tính pn, Sn. b) Tìm giới hạn của ...

Gọi C là nửa đường tròn đường kính AB = 2R.

C1 là đường gồm hai nửa đường tròn đường kính \(\frac{2}\).

C2 là đường gồm bốn nửa đường tròn đường kính \(\frac{4}\), ...

Cn là đường gồm 2n nửa đường tròn đường kính \(\frac{{{2^n}}},...\)(Hình 4).

Gọi Pn là độ dài của C, Sn là diện tích hình phẳng giới hạn bởi Cn và đoạn thẳng AB.

a) Tính pn, Sn.

b) Tìm giới hạn của các dãy số (pn) và (Sn).

1 trả lời
Hỏi chi tiết
14
0
0
Đặng Bảo Trâm
10/09 22:04:46

Lời giải

a)

+) Ta có: p1 = \(\frac{{\pi R}}{2}\); p2 = \(\frac{{\pi R}}{4} = \frac{{\pi R}}{{{2^2}}}\); p3 = \(\frac{{\pi R}}{8} = \frac{{\pi R}}{{{2^3}}}\); ...

(pn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu p1 = \(\frac{{\pi R}}{2}\) và công bội \(q = \frac{1}{2} < 1\) có số hạng tổng quát pn = \(\frac{{\pi R}}{2}.{\left( {\frac{1}{2}} \right)^{n - 1}}\).

+) Ta có: C1 = \(\frac{{\pi {R^2}}}{4}\); C2 = \(\frac{{\pi {R^2}}}{{{4^2}}}\); C3 = \(\frac{{\pi {R^3}}}{{{4^3}}}\); ...

(Cn) lập thành một cấp số nhân lùi vô hạn với số hạng đầu C1 = \(\frac{{\pi {R^2}}}{4}\) và công bội \(q = \frac{1}{4} < 1\) có số hạng tổng quát Cn = \(\frac{{\pi R}}{4}.{\left( {\frac{1}{4}} \right)^{n - 1}}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư