Cho tam giác ABC cân tại A. Lấy điểm M, N lần lượt trên cạnh AB, AC sao cho AM = AN.
Xác định vị trí các điểm M, N để BM = MN = NC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do BM = MN nên tam giác MBN cân tại M. Suy ra \(\widehat {MNB} = \widehat {MBN}\).
Mà MN // BC nên \(\widehat {MNB} = \widehat {NBC}\) (hai góc so le trong), suy ra \(\widehat {MBN} = \widehat {NBC}\).
Do đó, BN là tia phân giác của góc ABC.
Tương tự, ta cũng chứng minh được CM là tia phân giác của góc ACB.
Dễ thấy, nếu các điểm M, N được xác định sao cho BN, CM lần lượt là tia phân giác của góc ABC, ACB thì BN = MN = CN.
Vậy M là giao điểm của AB và tia phân giác của góc ACB, N là giao điểm của AC và tia phân giác của góc ABC thì BN = MN = CN.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |