Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).
Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do H là trung điểm của AM nên \(HM = \frac{1}{2}AM\).
Ta có diện tích tam giác ABC bằng: \(\frac{1}{2}.AM.BC = HM.BC\).
Xét ∆BCH và ∆CBD có:
BH = CD, BD = HC (do BDCH là hình bình hành), cạnh BC chung
Do đó ∆BCH = ∆CBD (c.c.c)
Suy ra S∆BCH = S∆CBD
Nên diện tích tứ giác BHCD bằng 2 lần diện tích tam giác BCH.
Khi đó, diện tích tứ giác BHCD bằng: \(2\left( {\frac{1}{2}.HM.BC} \right) = HM.BC\).
Vậy diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |