Cho tam giác ABC vuông cân tại A. Lấy điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của điểm M trên đường thẳng AB, AC.
Điểm M ở vị trí nào trên cạnh BC thì DE có độ dài nhỏ nhất? Tính độ dài nhỏ nhất đó, biết AB = 2 cm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do ADME là hình chữ nhật nên AM = DE.
Suy ra DE có độ dài nhỏ nhất khi AM có độ dài nhỏ nhất.
Vậy M là hình chiếu của A trên đường thẳng BC.Trong tam giác ABC vuông cân tại A, ta có:
AC = AB = 2 cm và BC2 = AB2 + AC2 = 22 + 22 = 8 (định lý Pythagore)
Suy ra \[BC = \sqrt 8 {\rm{\;cm}}\].
Xét ∆ABM vuông tại M và ∆ACM vuông tại M có:
Cạnh AM chung, \(\widehat {ABM} = \widehat {ACM}\) (do ∆ABC vuông cân tại A)
Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề).
Suy ra \(BM = CM = \frac{2} = \frac{{\sqrt 8 }}{2} = \sqrt 2 {\rm{\;cm}}\).
Tam giác ABM vuông tại M có \(\widehat {ABM} = 45^\circ \) nên \(\widehat {BAM} = \widehat {ABM} = 45^\circ \).
Suy ra tam giác ABM vuông cân tại M.
Do đó \(DE = AM = BM = \sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right)\).
Vậy \(DE = \sqrt 2 {\rm{\;cm}}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |