Bài tập  /  Bài đang cần trả lời

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE. Chứng minh AE = AM = FM.

Cho hình vuông ABCD có AB = 12 cm. Trên cạnh CD lấy điểm E sao cho DE = 5 cm. Tia phân giác của góc BAE cắt BC tại F. Trên tia đối của tia BC lấy điểm M sao cho BM = DE.

Chứng minh AE = AM = FM.

1 Xem trả lời
Hỏi chi tiết
23
0
0

Do ABCD là hình vuông nên AB = AD, \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)

Ta có: \(\widehat {ABM} + \widehat {ABC} = 180^\circ \) (2 góc kề bù) nên \(\widehat {ABM} = 180^\circ - \widehat {ABC} = 180^\circ - 90^\circ = 90^\circ \)

Xét ∆ADE và ∆ABM có:

\(\widehat {ADE} = \widehat {ABM} = 90^\circ \), AD = AB, DE = BM

Do đó ∆ADE = ∆ABM (hai cạnh góc vuông)

Suy ra AE = AM (1) và \(\widehat {DAE} = \widehat {BAM}\).

Do AF là tia phân giác của \(\widehat {BAE}\) nên \(\widehat {EAF} = \widehat {BAF}\).

Suy ra \(\widehat {DAE} + \widehat {EAF} = \widehat {BAM} + \widehat {BAF}\) hay \(\widehat {DAF} = \widehat {MAF}\).

Mà \(\widehat {DAF} = \widehat {MFA}\) (hai góc so le trong do AD // BC), suy ra \(\widehat {MFA} = \widehat {MAF}\).

Do đó, tam giác MAF cân tại M nên AM = FM (2)

Từ (1) và (2) suy ra AE = AM = FM.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×