Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm.
b) Tính \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right)\) và cho biết ý nghĩa của kết quả.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Chi phí trung bình \(\overline C \left( x \right)\) để sản xuất một sản phẩm là:
\(\overline C \left( x \right) = \frac{{50{\rm{ }}000{\rm{ }} + {\rm{ }}105x}}{x}\) (sản phẩm).
b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{50{\rm{ }}000{\rm{ }} + {\rm{ }}105x}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {\frac{{50{\rm{ }}000}}{x}{\rm{ }} + {\rm{ }}105} \right)}}{x}\)
\( = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{50{\rm{ }}000}}{x}{\rm{ }} + {\rm{ }}105} \right) = 105\).
Ý nghĩa: Khi số sản phẩm sản xuất ra ngày càng nhiều thì chi phí trung bình chỉ tối đa là 105 nghìn đồng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |