Bài tập  /  Bài đang cần trả lời

Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB. a) Chứng minh rằng (G1G2G3) // (BCD). b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).

Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.

a) Chứng minh rằng (G1G2G3) // (BCD).

b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).

1 Xem trả lời
Hỏi chi tiết
56
0
0
Tôi yêu Việt Nam
10/09/2024 22:20:40

Lời giải

a)

Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.

Trong mp(ABC), xét DABC có G1 là trọng tâm của tam giác nên \(\frac{{A{G_1}}} = \frac{2}{3}\);

Trong mp(ACD), xét DACD có G2 là trọng tâm của tam giác nên \(\frac{{A{G_2}}} = \frac{2}{3}\);

Trong mp(ABD), xét DABD có G3 là trọng tâm của tam giác nên \(\frac{{A{G_3}}} = \frac{2}{3}\).

Trong mp(AMP), xét DAMP có \(\frac{{A{G_1}}} = \frac{{A{G_3}}} = \frac{2}{3}\) nên G1G3­ // MP (theo định lí Thalès đảo).

Mà MP ⊂ (BCD) nên G1G3­ // (BCD).

Chứng minh tương tự ta cũng có \[\frac{{A{G_2}}} = \frac{{A{G_3}}} = \frac{2}{3}\] nên G2G3 // NP (theo định lí Thalès đảo).

Mà NP ⊂ (BCD) nên G2G3­ // (BCD).

Ta có: G1G3­ // (BCD);

           G2G3­ // (BCD);

           G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).

Do đó (G1G2G3) // (BCD).

b)

 

Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.

Giả sử (ABD) ∩ (G1G2G3) = d.

Ta có: (G1G2G3) // (BCD);

           (ABD) ∩ (BCD) = BD;

           (ABD) ∩ (G1G2G3) = d.

Suy ra d // BD.

Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G là giao điểm của (G1G2G3) và (ABD).

Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.

Vậy (G1G2G3) ∩ (ABD) = IK.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×