Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA’, C’D’, AD’. Chứng minh rằng:
a) NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’;
b) Tứ giác MNQC là hình bình hành;
c) MN // (ACD’);
d) (MNP) // (ACD’).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a)
Trong mp(ADD’A’), xét DAA’D’ có N, Q lần lượt là trung điểm của AA’ và AD’
Do đó NQ là đường trung bình của tam giác
Suy ra NQ // A’D’ và NQ = \(\frac{1}{2}\)A’D’.
b)
Ta có: A’D’ // AD // BC, mà NQ // A’D’ (câu a) nên NQ // BC hay NQ // MC.
Ta cũng có A’D’ = AD = BC, mà NQ = \(\frac{1}{2}\)A’D’ (câu a) nên NQ = \(\frac{1}{2}\)BC
Lại có BM = MC = \(\frac{1}{2}\)BC (do M là trung điểm BC)
Do đó NQ = MC.
Tứ giác MNQC có NQ // MC và NQ = MC nên là MNQC hình bình hành.
c)
Do MNQC hình bình hành nên MN // QC
Mà QC ⊂ (ACD’) nên MN // (ACD’).
d)
Gọi O là trung điểm của ABCD.
Trong (ABCD), xét DABC có O, M lần lượt là trung điểm của AC, BC nên OM là đường trung bình của tam giác
Do đó OM // AB và OM = \(\frac{1}{2}\)AB.
Mà AB // D’P nên OM // D’P.
Lại có D’P = \(\frac{1}{2}\)D’C’ và D’C’ = AB nên OM = D’P.
Xét tứ giác D’PMO có OM // D’P và OM = D’P nên là hình bình hành
Suy ra PM // D’O
Mà D’O ⊂ (ACD’) nên PM // (ACD’).
Ta có: MN // (ACD’);
PM // (ACD’);
MN, PM cắt nhau tại điểm M và cùng nằm trong mp(MNP)
Do đó (MNP) // (ACD’).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |