Tìm khoảng đồng biến, nghịch biến của các hàm số sau:
\(f\left( x \right) = \frac{1}{{ - x - 5}}\);
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Tập xác định của hàm số là: D = ℝ \ {– 5}.
+ Xét khoảng (– ∞; – 5):
Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.
Ta có: \(f\left( \right) - f\left( \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}}\)\( = \frac{{ - {x_2} - 5 - \left( { - {x_1} - 5} \right)}}{{\left( { - {x_1} - 5} \right)\left( { - {x_2} - 5} \right)}}\)\( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\).
Vì x1, x2 ∈ (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.
Lại có: x1 < x2 nên x1 – x2 < 0.
Do đó, f(x1) – f(x2) \( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)
+ Xét khoảng (– 5; + ∞):
Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.
Ta có: \(f\left( \right) - f\left( \right) = \frac{1}{{ - {x_3} - 5}} - \frac{1}{{ - {x_4} - 5}}\)\( = \frac{{ - {x_4} - 5 - \left( { - {x_3} - 5} \right)}}{{\left( { - {x_3} - 5} \right)\left( { - {x_4} - 5} \right)}}\)\( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\).
Vì x3, x4 ∈ (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.
Lại có: x3 < x4 nên x3 – x4 < 0.
Do đó, f(x3) – f(x4) \( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)
Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |