Cho đường thẳng mx + (2 – 3m)y + m – 1= 0 (d)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua.
b) Tìm m để khoảng cách từ gốc O đến đường thẳng (d) lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Gọi I (x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua với điểm m nên ta có: mx0 + (2 – 3m)y0 + m – 1 = 0 \(\forall m\)
⇔ m(x0 – 3y0 + 1) + 2y0 – 1 = 0 \(\forall m\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{1}{2}\end{array} \right.\)
⇔ \(I\left( {\frac{1}{2};\frac{1}{2}} \right)\).
b) Gọi H là hình chiếu vuông góc của O lên đường thẳng (d).
Ta có: OH ≤ OI nên OH lớn nhất bằng OI khi và chỉ khi H ≡ I hay OI ⊥ (d). Đường thẳng qua O có phương trình u = ax do \(I\left( {\frac{1}{2};\frac{1}{2}} \right) \in OI \Rightarrow \frac{1}{2} = \frac{1}{2}a\).
Suy ra a = 1.
Do đó OI: y = x.
Đường thẳng (d) được viết lại như sau:
mx + (2 – 3m)y + m – 1 = 0
⇔ (2 – 3m)y = –mx + 1 – m
• Nếu \(m = \frac{2}{3}\) thì đường thẳng (d): \(x - \frac{1}{2} = 0\) song song với trục Oy nên khoảng cách từ O đến (d) là \(\frac{1}{2}\).
• Nếu \(m \ne \frac{2}{3}\) đường thẳng (d) có thể viết lại \(y = \frac{m}x + \frac\).
Điều kiện để (d) vuông góc với OI là: \(\frac{m}.1 = - 1\)
\( \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \frac{1}{2}\).
Khi đó \(OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 2 }}{2}\).
Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cẩu bài toán.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |