Cho tam giác ABC có BC = 50 cm, \(\widehat B = 65^\circ ,\widehat C = 45^\circ \). Tính (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).
Độ dài cạnh AB, AC;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Xét tam giác ABC, có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc)
⇒ \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {65^\circ + 45^\circ } \right) = 70^\circ \).
Áp dụng định lí sin trong tam giác ABC, ta được:
\(\frac{{\sin C}} = \frac{{\sin B}} = \frac{{\sin A}}\)
⇔ \(\frac{{\sin 45^\circ }} = \frac{{\sin 65^\circ }} = \frac{{\sin 70^\circ }} = 2R\)
⇒ \(\frac{{\sin 45^\circ }} = \frac{{\sin 70^\circ }}\) ⇔ \(AB = \frac{{50.\sin 45^\circ }}{{\sin 70^\circ }} \approx 37,6\)
⇒ \(\frac{{\sin 65^\circ }} = \frac{{\sin 70^\circ }}\) ⇔ \(AC = \frac{{50\sin 65^\circ }}{{\sin 70^\circ }} \approx 48,2\)
Vậy AB ≈ 37,6 vậy AC ≈ 48,2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |