Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vẽ đường kính AE
Ta có: \(\widehat {ACE} = 90^\circ \) nên AC ⊥ EC
Mà BH ⊥ EC
⇒ BH // AC (1)
Ta lại có:\(\widehat {ABE} = 90^\circ \) và AB ⊥ BE
Mà CH ⊥ AB
⇒ BE // CH (2)
Từ (1) và (2) suy ra BHEC là hình bình hành
Xét tứ giác AHDE, có:
O là trung điểm của HD (gt)
O là trung điểm của AE
Do đó AHDE là hình bình hành
Khi đó, ta có:
\(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HA} + \left( {\overrightarrow {HB} + \overrightarrow {HC} } \right) = \overrightarrow {HA} + \overrightarrow {HE} = \overrightarrow {HD} \).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |