Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC), N là trung điểm của AB. Biết AB=6cm, AC=8cm. Gọi E là hình chiếu vuông góc của H lên AC và T là điểm đối xứng của N qua I với I là giao điểm của CN và HE. Chứng minh tứ giác NETH là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta chứng minh I là trung điểm của HE.
Vì HE⊥AC nên HE // BA. Theo định lí Talet ta có: IENA=CICN=IHNB.
Vì NA = NB nên IE = IH. Do đó I là trung điểm của HE.
Theo giả thiết thì I là trung điểm của NT.
Tứ giác NETH có hai đường chéo NT và EH có chung trung điểm I nên NETH là hình bình hành.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |