Cho 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Cứ qua 2 điểm ta vẽ được một đường thẳng. Hỏi từ 20 điểm đó vẽ được tất cả bao nhiêu đường thẳng?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190 (đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15 (đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176 (đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |