Bài tập  /  Bài đang cần trả lời

Giải các bất phương trình sau: a) 2x2 – 3x + 1 > 0; b) x2 + 5x + 4 < 0; c) – 3x2 + 12x – 12 ≥ 0; d) 2x2 + 2x + 1 < 0.

Giải các bất phương trình sau:

a) 2x2 – 3x + 1 > 0;

b) x2 + 5x + 4 < 0;

c) – 3x2 + 12x – 12 ≥ 0;

d) 2x2 + 2x + 1 < 0.

1 trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Phú
11/09 09:08:19

Hướng dẫn giải

a) Tam thức bậc hai f(x) = 2x2 – 3x + 1 có ∆ = (– 3)2 – 4 . 2 . 1 = 1 > 0 nên f(x) có hai nghiệm x1 = \(\frac{1}{2}\) và x2 = 1.

Mặt khác hệ số a = 2 > 0, do đó ta có bảng xét dấu sau:

x

– ∞                      \(\frac{1}{2}\)                            1                  + ∞

f(x)

             +             0              –             0                +

Suy ra bất phương trình đã cho có tập nghiệm là S = \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\).

b) Tam thức bậc hai f(x) = x2 + 5x + 4 có ∆ = 52 – 4 . 1 . 4 = 9 > 0 nên f(x) có hai nghiệm x1 = – 4 và x2 = – 1.

Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:

x

– ∞                     – 4                         – 1                  + ∞

f(x)

             +             0              –             0                +

Vậy bất phương đã cho có tập nghiệm là S = (– 4; – 1).

c) Tam thức bậc hai f(x) = – 3x2 + 12x – 12 có ∆' = 62 – (– 3) . (– 12) = 0 nên f(x) có nghiệm kép x = 2. Lại có hệ số a = – 3 < 0 nên f(x) luôn âm (cùng dấu với a) với mọi x ≠ 2.

Vậy bất phương trình đã cho có nghiệm duy nhất x = 2.

d) Tam thức bậc hai f(x) = 2x2 + 2x + 1 có ∆' = 12 – 2 . 1 = – 1 < 0, hệ số a = 2 > 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là 2x2 + 2x + 1 > 0 với mọi \(x \in \mathbb{R}\).

Vậy bất phương trình đã cho vô nghiệm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k