Giải các bất phương trình sau:
a) 2x2 – 3x + 1 > 0;
b) x2 + 5x + 4 < 0;
c) – 3x2 + 12x – 12 ≥ 0;
d) 2x2 + 2x + 1 < 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Tam thức bậc hai f(x) = 2x2 – 3x + 1 có ∆ = (– 3)2 – 4 . 2 . 1 = 1 > 0 nên f(x) có hai nghiệm x1 = \(\frac{1}{2}\) và x2 = 1.
Mặt khác hệ số a = 2 > 0, do đó ta có bảng xét dấu sau:
x | – ∞ \(\frac{1}{2}\) 1 + ∞ |
f(x) | + 0 – 0 + |
Suy ra bất phương trình đã cho có tập nghiệm là S = \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\).
b) Tam thức bậc hai f(x) = x2 + 5x + 4 có ∆ = 52 – 4 . 1 . 4 = 9 > 0 nên f(x) có hai nghiệm x1 = – 4 và x2 = – 1.
Mặt khác hệ số a = 1 > 0, do đó ta có bảng xét dấu sau:
x | – ∞ – 4 – 1 + ∞ |
f(x) | + 0 – 0 + |
Vậy bất phương đã cho có tập nghiệm là S = (– 4; – 1).
c) Tam thức bậc hai f(x) = – 3x2 + 12x – 12 có ∆' = 62 – (– 3) . (– 12) = 0 nên f(x) có nghiệm kép x = 2. Lại có hệ số a = – 3 < 0 nên f(x) luôn âm (cùng dấu với a) với mọi x ≠ 2.
Vậy bất phương trình đã cho có nghiệm duy nhất x = 2.
d) Tam thức bậc hai f(x) = 2x2 + 2x + 1 có ∆' = 12 – 2 . 1 = – 1 < 0, hệ số a = 2 > 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là 2x2 + 2x + 1 > 0 với mọi \(x \in \mathbb{R}\).
Vậy bất phương trình đã cho vô nghiệm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |