a) \(\sqrt {2{x^2} - 14} = x - 1\);
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) \(\sqrt {2{x^2} - 14} = x - 1\)
Bình phương hai vế của phương trình trên ta được
2x2 – 14 = x2 – 2x + 1
⇔ x2 + 2x – 15 = 0
⇔ x = – 5 hoặc x = 3.
Lần lượt thay các giá trị này vào phương trình đã cho, ta thấy x = 3 thỏa mãn.
Vậy nghiệm của phương trình đã cho là x = 3.
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} \)
Bình phương hai vế của phương trình trên ta được:
– x2 – 5x + 2 = x2 – 2x – 3
⇔ 2x2 + 3x – 5 = 0
⇔ x = \( - \frac{5}{2}\) hoặc x = 1.
Lần lượt thay các giá trị này vào phương trình đã cho, ta thấy chỉ có x = \( - \frac{5}{2}\) thỏa mãn.
Vậy nghiệm của phương trình đã cho là x = \( - \frac{5}{2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |