Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm ở vị trí này là:
(2 + sin0°; 4 + cos0°) = (2; 5).
Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm ở vị trí này là:
(2 + sin 180°; 4 + cos 180°) = (2; 3).
b) Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.
Ta có: x = 2 + sin t° và y = 4 + cost°.
Suy ra: x – 2 = sin t° và y – 4 = cost°.
Mà sin2 t° + cos2 t° = 1 (0 ≤ t ≤ 180)
Do đó ta có: (x – 2)2 + (y – 4)2 = 1.
Vậy vật thể chuyển động trên đường tròn có tâm I(2; 4) và bán kính R = 1.
Vị trí ban đầu của vật thể là A(2; 5), vị trí kết thúc của vật thể là B(2; 3).
Ta có 2+22=2; 5+32=4 nên I là trung điểm của AB
Và AB2=2−22+3−522=22=1=R.
Do đó vật thể chuyển động trên đường tròn có tâm I(2; 4), bán kính R = 1 và nhận AB làm đường kính.
Khi t thay đổi trên đoạn [0; 180] thì sin t° thay đổi trên đoạn [0; 1] và cos t° thay đổi trên đoạn [– 1; 1]. Do đó 2 + sin t° ∈ [2; 3] và 4 + cos t° ∈ [3; 5].
Vậy quỹ đạo của vật thể (hay là tập hợp điểm M) là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm C(3; 0), bờ AB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |