Gieo đồng thời một con xúc xắc và một đồng xu.
a) Mô tả không gian mẫu.
b) Xét các biến cố sau:
C: “Đồng xu xuất hiện mặt sấp”;
D: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc là 5”.
Các biến cố C, \(\overline C \), D và \(\overline D \) là các tập con nào của không gian mẫu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) Gieo một đồng xu, các kết quả có thể là xuất hiện mặt sấp và mặt ngửa.
Gieo một con xúc xắc, các kết quả có thể là xuất hiện mặt 1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm.
Kí hiệu S là mặt sấp, N là mặt ngửa. Không gian mẫu được cho theo bảng:
1 | 2 | 3 | 4 | 5 | 6 | |
S | S1 | S2 | S3 | S4 | S5 | S6 |
N | N1 | N2 | N3 | N4 | N5 | N6 |
Do đó ta có: Ω = {S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6}.
b) Biến cố C: “Đồng xu xuất hiện mặt sấp”.
Biến cố \(\overline C \): “Đồng xu xuất hiện mặt ngửa”. (không xuất hiện mặt sấp, là xuất hiện mặt ngửa).
Do đó, C = {S1; S2; S3; S4; S5; S6};
\(\overline C \) = {N1; N2; N3; N4; N5; N6}.
Biến cố D: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc là 5”.
Biến cố \(\overline D \): “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc khác 5”.
Do đó, D = {N1; N2; N3; N4; N5; N6; S5};
\(\overline D \) = {S1; S2; S3; S4; S6}.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |