Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Không gian mẫu là tập tất cả các tập con gồm 6 học sinh trong 12 học sinh.
Do đó, n(Ω) = \(C_{12}^6\) = 924.
Gọi biến cố A: “6 học sinh được chọn số học sinh nữ bằng số học sinh nam”.
Để số học sinh nữ bằng số học sinh nam thì chọn 3 nữ và 3 nam.
Mỗi phần tử của A được hình thành từ hai công đoạn.
Công đoạn 1. Chọn 3 học sinh nữ từ 5 học sinh nữ, có \(C_5^3 = 10\) (cách chọn).
Công đoạn 2. Chọn 3 học sinh nam từ 7 học sinh nam, có \(C_7^3 = 35\) (cách chọn).
Theo quy tắc nhân, tập A có 10 . 35 = 350 (phần tử). Do đó, n(A) = 350.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac = \frac\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |