Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:
a) Tổng số chấm trên hai con xúc xắc bằng 8;
b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Gieo hai con xúc xắc cân đối nên kết quả xảy ra có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Do đó, số kết quả có thể xảy ra là: 6 . 6 = 36, hay n(Ω) = 36.
a) Gọi biến cố A: “Tổng số chấm trên hai con xúc xắc bằng 8”.
Có 8 = 2 + 6 = 6 + 2 = 3 + 5 = 5 + 3 = 4 + 4. Nên số kết quả thuận lợi với A là: 5 hay n(A) = 5.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}.\)
b) Gọi biến cố B: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”.
Mỗi phần tử của B được tạo ra bởi một trong các trường hợp sau:
+ Nếu số chấm của xúc xắc thứ nhất là 1 thì số chấm xúc xắc thứ hai có thể từ 1 đến 6: có 6 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 2 thì số chấm xúc xắc thứ hai có thể từ 1 đến 5: có 5 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 3 thì số chấm xúc xắc thứ hai có thể từ 1 đến 4: có 4 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 4 thì số chấm xúc xắc thứ hai có thể từ 1 đến 3: có 3 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 5 thì số chấm xúc xắc thứ hai có thể từ 1 đến 2: có 2 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 6 thì số chấm xúc xắc thứ hai có thể là 1: có 1 cách.
Vì các trường hợp là rời nhau nên theo quy tắc cộng, số cách là: 6 + 5 + 4 + 3 + 2 + 1 = 21 cách, hay n(B) = 21.
Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac = \frac{7}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |