Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}.\) Có bao nhiêu giá trị của \(m\) để đồ thị hàm số có duy nhất một tiệm cận đứng?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt \(g(x) = {x^2} - 2x + 2m.\)
− Khi \(m = - 1\) ta có hàm số \(y = f(x) = \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}}.\)
− Khi đó \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}} = - \infty \) suy ra đồ thị của hàm số đã cho có duy nhất một tiệm cận đứng là \(x = 1.\)
− Khi \(m \ne 1\), xét hàm số \[y = f(x) = \frac{{{x^2} - 2x + 2m}}{{\left( {x - 1} \right)\left( {x + m} \right)}}\].
• TH1: Đồ thị hàm số đã cho có duy nhất một tiệm cận đứng \(x = 1.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{g(1) \ne 0}\\{g( - m) = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 1 + 2m \ne 0}\\{{m^2} + 4m = 0}\end{array} \Leftrightarrow \left\{ \begin{array}{l}m \ne \frac{1}{2}\\\left[ \begin{array}{l}m = 0\\m = - 4\end{array} \right.\end{array} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{m = - 4}\end{array}} \right.} \right.} \right.\)
• TH2: Đồ thị hàm số đã cho có duy nhất một tiệm cận đứng \(x = m.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{g(1) = 0}\\{g( - m) \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 + 2m = 0}\\{{m^2} + 4m \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = \frac{1}{2}}\\{m \ne 0}\\{m \ne - 4}\end{array} \Leftrightarrow m = \frac{1}{2}.} \right.} \right.} \right.\)
Vậy có 4 giá trị của \(m\) thoả mãn yêu cầu bài toán.
Đáp án: 4.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |