Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh 2, SA vuông góc với đáy và khoảng cách từ \(C\) đến mặt phẳng \(\left( {SBD} \right)\) bằng \(\frac{{2\sqrt 3 }}{3}.\) Thể tích của khối chóp đó là
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(O = AC \cap BD\,;\,\,H\) là hình chiếu của \(A\) lên \[SO.\]
Vì \(O\) là trung điểm của AC nên \(d\left( {C,\,\,\left( {SBD} \right)} \right) = d\left( {A,\,\,\left( {SBD} \right)} \right)\)
Ta có \(BD \bot AC\,;\,\,BD \bot SA \Rightarrow BD \bot \left( {SAC} \right)\)
\( \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right).\)
\(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\)
\(AH \bot SO \Rightarrow AH \bot (SBD) \Rightarrow AH = d\left( {A,\left( {SBD} \right)} \right) = d\left( {C,\left( {SBD} \right)} \right) = \frac{{2\sqrt 3 }}{3}{\rm{. }}\)
Ta có \(AO = \sqrt 2 .\) Xét tam giác \[SAO\] có \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\)
\( \Rightarrow \frac{1}{{S{A^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{O^2}}} = \frac{3}{4} - \frac{1}{2} = \frac{1}{4} \Rightarrow SA = 2\)
Thể tích của khối chóp là \({V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SA = \frac{8}{3}.\)
Đáp án: \(\frac{8}{3}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |