Chọn ngẫu nhiên ba số \[a,\,\,b,\,\,c\] trong tập hợp \(S = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,20} \right\}.\) Biết xác suất để ba số tìm được thoả mãn \({a^2} + {b^2} + {c^2}\) chia hết cho 3 bằng \(\frac{m}{n}\), với \[m,\,\,n\] là các số nguyên dương và phân số \(\frac{m}{n}\) tối giản. Biểu thức \(S = m + n\) bằng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(A\) là biến cố: "Ba số tìm được thoả mãn \({a^2} + {b^2} + {c^2}\) chia hết cho 3".
Ta có \(n\left( \Omega \right) = C_{20}^3 = 1\,\,140\).
Tập hợp các số \[S = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots ;\,\,20} \right\}\] gồm:
• 6 số chia hết cho 3 là: \[3\,;\,\,6\,;\,\,9\,;\,\,12\,;\,\,15\,;\,\,18.\]
• 14 số còn lại không chia hết cho 3.
Ta thấy số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Do đó, các trường hợp thuận lợi cho biến cố \(A\) là
− TH1: \({a^2},{b^2},{c^2}\) cùng chia hết cho 3 nên \(a,\,\,b,\,\,c\) cùng chia hết cho 3.
Do đó có \(C_6^3 = 20\) cách chọn \[a,\,\,b,\,\,c.\]
− TH2: \({a^2},\,\,{b^2},\,\,{c^2}\) cùng chia hết cho 3 dư 1 nên \(a,\,\,b,\,\,c\) cùng không chia hết cho 3.
Do đó có \(C_{14}^3 = 364\) cách chọn \[a,\,\,b,\,\,c\] \( \Rightarrow n(A) = 364 + 20 = 384\).
Khi đó xác suất của biến cố \(A\) là: \(P(A) = \frac = \frac\).
Vậy \(m = 32\,;\,\,n = 95 \Rightarrow m + n = 127\). Đáp án: 127.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |