Trên tập hợp các số phức, xét phương trình \({z^2} - 2z + m - 5 = 0\) (\(m\) là tham số thực). Gọi \(S\) là tập hợp giá trị của \(m\) để phương trình có hai nghiệm \({z_1},\,\,{z_2}\) thỏa mãn \({\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 40.\) Tổng các phần tử của tập hợp \(S\) là
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \(\Delta ' = 6 - m.\)
• TH1: \(\Delta ' \ge 0 \Leftrightarrow m \le 6\), phương trình có hai nghiệm \({z_{1,2}} = 1 \pm \sqrt {6 - m} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{z_1} + {z_2} = 2}\\{{z_1} - {z_2} = 2\sqrt {6 - m} }\end{array}} \right..\)
Khi đó \({\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 40 \Leftrightarrow {2^2} + {\left| {\sqrt {6 - m} } \right|^2} = 40 \Leftrightarrow 4 + 4\left( {6 - m} \right) = 40 \Leftrightarrow m = - 3\) (TM).
• TH2: \(\Delta ' < 0 \Leftrightarrow 6 - m < 0 \Leftrightarrow m > 6\), phương trình có hai nghiệm:
\({z_{1;\,\,2}} = 1 \pm i\sqrt {\Delta '} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{z_1} + {z_2} = 2}\\{{z_1} - {z_2} = 2i\sqrt {m - 6} }\end{array}} \right.\).
Khi đó \({\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 40 \Leftrightarrow {2^2} + {\left| {2i\sqrt {m - 6} } \right|^2} = 40 \Leftrightarrow 4 + 4\left( {m - 6} \right) = 40 \Leftrightarrow m = 15\) (TM).
Vậy \(S = \left\{ { - 3\,;\,\,15} \right\}.\) Tổng các phần tử của \(S\) là \( - 3 + 15 = 12.\) Đáp án: 12.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |