Một quả bóng được ném thẳng ở độ cao 1,6m so với mặt đất với vận tốc 10m/s. Độ cao của bóng so với mặt đất (tính bằng mét) sau t giây được cho bởi hàm số h(t) = - 4,9t2 + 10t + 1,6. Hỏi:
a) Bóng có thể cao trên 7m không?
b) Bóng ở độ cao trên 5m trong khoảng thời gian bao lâu? Làm tròn kết quả đến hàng phần trăm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét hiệu h(t) – 7 = - 4,9t2 + 10t + 1,6 – 7 = - 4,9t2 + 10t – 5,4 là hàm số bậc hai với a = -4,9, b = 10, c = - 5,4 và ∆ = 102 – 4.(-4,9).(-5,4) = -5,84 < 0. Do đó tam thức -4,9t2 + 10t – 5,4 vô nghiệm và a = - 4,9 > 0 nên - 4,9t2 + 10t – 5,4 < 0 với mọi t hay h(t) – 7 < 0 với mọi t.
⇔ h(t) < 7 với mọi t.
Vì vậy bóng không thể đạt độ cao trên 7m.
b) Bóng ở độ cao trên 5m nghĩa là h(t) ≥ 5 ⇔ -4,9t2 + 10t + 1,6 ≥ 5
⇔ -4,9t2 + 10t + 1,6 – 5 ≥ 0.
⇔ -4,9t2 + 10t – 3,4 ≥ 0.
Tam thức k(t) = -4,9t2 + 10t – 3,4 có ∆ = 102 – 4.(-4,9).(-3,4) = 33,36 > 0. Do đó k(t) có hai nghiệm phân biệt t1 ≈ 1,61 và t2 ≈ 0,43.
Suy ra k(t) > 0 khi t ∈ (0,43; 1,61).
Khi đó bóng ở độ cao trên 5m nằm trong khoảng thời gian từ 1,61 – 0,43 = 1,18s.
Vậy trong khoảng thời gian 1,18s thì bóng ở độ cao trên 5m.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |