Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = 2,\,\,AD = 2\sqrt 3 \), tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, khoảng cách giữa hai đường thẳng \[AB\] và \[SC\] bằng 3. Thể tích của khối chóp \[S.ABCD\] bằng \(a\sqrt 3 \) với \(a\) là số nguyên dương. Khi đó, giá của của \(a\) bằng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \[H,\,\,I\] lần lượt là trung điểm của \[AB,\,\,CD,\] kẻ \(HK \bot SI\) tại \[K.\]
Vì tam giác \[SAB\] cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right).\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot HI}\\{CD \bot SH}\end{array} \Rightarrow CD \bot \left( {SIH} \right)} \right.\)
\( \Rightarrow CD \bot HK \Rightarrow HK \bot \left( {SCD} \right)\)Mặt khác \(CD\,{\rm{//}}\,AB\) nên \(d\left( {AB\,,\,\,SC} \right) = d\left( {AB,\,\,\left( {SCD} \right)} \right) = d\left( {H,\,\,\left( {SCD} \right)} \right) = HK\)
Suy ra \(HK = 3\,;\,\,HI = AD = 2\sqrt 3 .\)
Trong tam giác vuông \[SHI\] có \(SH = \sqrt {\frac{{H{I^2} \cdot H{K^2}}}{{H{I^2} - H{K^2}}}} = \sqrt {\frac{{{{\left( {2\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {2\sqrt 3 } \right)}^2} - {3^2}}}} = 6.\)
Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot 6 \cdot 4\sqrt 3 = 8\sqrt 3 .\) Suy ra \(a = 8.\)
Đáp án: 8.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |