Bài tập  /  Bài đang cần trả lời

Trên tập số phức, xét phương trình \({z^2} - 2mz + {m^2} + m + 8 = 0\) (\(m\) là tham số thực). Tổng các giá trị của \(m\) để phương trình đó có hai nghiệm phân biệt \({z_1},{z_2}\) và hai điểm biểu diễn \({z_1},{z_2}\) trên mặt phẳng phức cùng với gốc tọa độ tạo thành một tam giác có diện tích bằng 3 là:

Trên tập số phức, xét phương trình \({z^2} - 2mz + {m^2} + m + 8 = 0\) (\(m\) là tham số thực). Tổng các giá trị của \(m\) để phương trình đó có hai nghiệm phân biệt \({z_1},{z_2}\) và hai điểm biểu diễn \({z_1},{z_2}\) trên mặt phẳng phức cùng với gốc tọa độ tạo thành một tam giác có diện tích bằng 3 là:

1 Xem trả lời
Hỏi chi tiết
12
0
0
Nguyễn Thanh Thảo
11/09/2024 11:05:23

Ta có \({z^2} - 2mz + {m^2} + m + 8 = 0 \Rightarrow \Delta ' =  - m - 8.{\rm{ }}\)

Để phương trình có hai nghiệm phức phân biệt \( \Leftrightarrow \Delta ' < 0 \Leftrightarrow  - m - 8 < 0 \Leftrightarrow m >  - 8\).

Lại có \({S_{OAB}} = 3 \Leftrightarrow \frac{1}{2} \cdot OH \cdot AB = 3 \Leftrightarrow OH \cdot AB = 6.\)

\(OH = {x_} = {x_} = \frac{{ - b}} = m\); \(BA = 2BH = 2 \cdot {y_} = \frac{2} = \sqrt {m + 8} \)

\( \Rightarrow m \cdot \sqrt {m + 8}  = 6\)\( \Leftrightarrow {m^2}\left( {m + 8} \right) = 36\)\( \Leftrightarrow {m^3} + 8{m^2} - 36 = 0\).

Áp dụng định lí Viète, ta có \({m_1} + {m_2} + {m_3} = \frac{{ - b}}{a} =  - 8.\)

Đáp án: 8.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×