Trên tập số phức, xét phương trình \({z^2} - 2mz + {m^2} + m + 8 = 0\) (\(m\) là tham số thực). Tổng các giá trị của \(m\) để phương trình đó có hai nghiệm phân biệt \({z_1},{z_2}\) và hai điểm biểu diễn \({z_1},{z_2}\) trên mặt phẳng phức cùng với gốc tọa độ tạo thành một tam giác có diện tích bằng 3 là:
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \({z^2} - 2mz + {m^2} + m + 8 = 0 \Rightarrow \Delta ' = - m - 8.{\rm{ }}\)
Để phương trình có hai nghiệm phức phân biệt \( \Leftrightarrow \Delta ' < 0 \Leftrightarrow - m - 8 < 0 \Leftrightarrow m > - 8\).
Lại có \({S_{OAB}} = 3 \Leftrightarrow \frac{1}{2} \cdot OH \cdot AB = 3 \Leftrightarrow OH \cdot AB = 6.\)
\(OH = {x_} = {x_} = \frac{{ - b}} = m\); \(BA = 2BH = 2 \cdot {y_} = \frac{2} = \sqrt {m + 8} \)
\( \Rightarrow m \cdot \sqrt {m + 8} = 6\)\( \Leftrightarrow {m^2}\left( {m + 8} \right) = 36\)\( \Leftrightarrow {m^3} + 8{m^2} - 36 = 0\).
Áp dụng định lí Viète, ta có \({m_1} + {m_2} + {m_3} = \frac{{ - b}}{a} = - 8.\)
Đáp án: 8.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |