Có bao nhiêu số nguyên \(m\,\,\left( {m \ge 3} \right)\) sao cho ứng với mỗi giá trị của \(m\), phương trình \(\left( {{m^x} - mx + x} \right)\log m = \log \left( {mx} \right)\) có đúng hai nghiệm thuộc khoảng \(\left( {\frac{1};\,\, + \infty } \right)\)?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \(\left( {{m^x} - mx + x} \right)\log m = \log \left( {mx} \right) \Leftrightarrow {m^x} - mx + x = \frac{{\log \left( {mx} \right)}}{{\log m}}\)
Suy ra \(x = y \Leftrightarrow {m^x} = mx \Leftrightarrow \ln {m^x} = \ln \left( {mx} \right) \Leftrightarrow x \cdot \ln m = \ln m + \ln x\)
\( \Leftrightarrow x \cdot \ln m - \ln m = \ln x \Leftrightarrow \ln m = \frac{{\ln x}}\) với \(x > \frac{1}\) và \(x \ne 1.\)
Lập bảng biến thiên của hàm số \(f\left( x \right) = \frac{{\ln x}}.\)
Khi đó, phương trình \(\ln m = f\left( x \right)\) có hai nghiệm \( \Leftrightarrow \ln m < 7,616 \Leftrightarrow m < 2030,63.\)
Kết hợp với \(m \ge 3\) và \(m \in \mathbb{Z}\), ta có \(m \in \left\{ {3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\, \ldots \,;\,\,2030} \right\}.\)
Đáp án: 2028.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |