Bài tập  /  Bài đang cần trả lời

Trong không gian Oxyz, mắt một người quan sát ở điểm M(2; 3; −4) và vật cần quan sát đặt tại điểm N(−1; 0; 8). Một tấm bìa chắn đường truyền của ánh sáng có dạng hình tròn với tâm O(0; 0; 0), bán kính bằng 3 và đặt trong mặt phẳng Oxy. Hỏi tấm bìa có che khuất tầm nhìn của người quan sát đối với vật đặt ở điểm N hay không?

Trong không gian Oxyz, mắt một người quan sát ở điểm M(2; 3; −4) và vật cần quan sát đặt tại điểm N(−1; 0; 8). Một tấm bìa chắn đường truyền của ánh sáng có dạng hình tròn với tâm O(0; 0; 0), bán kính bằng 3 và đặt trong mặt phẳng Oxy. Hỏi tấm bìa có che khuất tầm nhìn của người quan sát đối với vật đặt ở điểm N hay không?

1 Xem trả lời
Hỏi chi tiết
40
0
0
Đặng Bảo Trâm
11/09/2024 11:09:52

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Ta có \(\overrightarrow {MN} = \left( { - 3; - 3;12} \right) = - 3\left( {1;1; - 4} \right)\)

Đường thẳng MN đi qua điểm M(2; 3; −4) và có một vectơ chỉ phương \(\overrightarrow u = \left( {1;1; - 4} \right)\) có phương trình là: \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = - 4 - 4t\end{array} \right.\).

Mặt phẳng Oxy có phương trình là z = 0.

Gọi D là giao điểm của đường thẳng MN với mặt phẳng Oxy nên tọa độ điểm D là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = - 4 - 4t\\z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 0\\t = - 1\end{array} \right.\). Vậy D(1; 2; 0).

Ta có \(MD = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2} + {4^2}} = \sqrt {18} \); \(MN = \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2} + {{12}^2}} = \sqrt {162} \).

Vì MD < MN nên D nằm giữa M và N.

Vậy tấm bìa có che khuất tầm nhìn của người quan sát đối với vật đặt ở điểm N.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×