Cho hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) có đạo hàm liên tục trên khoảng \(\left( {0\,;\,\, + \infty } \right)\) đồng thời thoả mãn \(f\left( 1 \right) = \frac{5}{2},\,\,g\left( 1 \right) = \frac{1}{2}\) và \(g\left( x \right) = - x \cdot f'\left( x \right),\,\,f\left( x \right) = - x \cdot g'\left( x \right)\,\,\forall x > 0.\) Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) và hai đường thẳng \(x = 3,\,\,x = 5\) bằng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \(f\left( x \right) - g\left( x \right) = - x \cdot g'\left( x \right) + x \cdot f'\left( x \right) = x \cdot \left[ {f'\left( x \right) - g'\left( x \right)} \right]\)
Đặt \(h\left( x \right) = f\left( x \right) - g\left( x \right) \Rightarrow h'\left( x \right) = f'\left( x \right) - g'\left( x \right)\).
Do đó \(h\left( x \right) = x \cdot h'\left( x \right) \Leftrightarrow \frac{{h'\left( x \right)}}{{h\left( x \right)}} = \frac{1}{x} \Leftrightarrow \int {\frac{{h'\left( x \right)}}{{h\left( x \right)}}} {\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x\)
\( \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln x + C\) mà \(h(1) = f(1) - g(1) = 2\) nên \(C = \ln 2.\)
Suy ra \(\ln \left| {h\left( x \right)} \right| = \ln x + \ln 2 \Leftrightarrow \ln \left| {h\left( x \right)} \right| = \ln \left( {2x} \right) \Leftrightarrow \left| {h\left( x \right)} \right| = 2x\).
Vậy diện tích cần tính là \(S = \int\limits_3^5 {\left| {f\left( x \right) - g\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {\left| {h\left( x \right)} \right|} \,{\rm{d}}x = \int\limits_3^5 {2x} \,{\rm{d}}x = 16.\)
Đáp án: 16.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |